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Abstract—With the rapid development of network hardware 
technologies and network bandwidth, the high link speeds and 
huge amount of threats poses challenges to network intrusion 
detection systems, which must handle the higher network 
traffic and perform more complicated packet processing. In 
general, pattern matching is a highly computationally intensive 
process part of network intrusion detection systems. In this 
paper, we present an efficient GPU-based pattern matching 
algorithm by leveraging the computational power of GPUs to 
accelerate the pattern matching operations to increase the 
over-all processing throughput. From the experiment results, 
the proposed algorithm achieved a maximum traffic processing 
throughput of 2.4 Gbit/s. The results demonstrate that GPUs 
can be used effectively to speed up intrusion detection systems.  

Keywords-GPU; parallel processing; patttern matching; 
intrusion dection systems 

I.  INTRODUCTION 
With the repaid development of network hardware 

technologies and network bandwidth, the high link speeds 
provide various platforms and web services to satisfy varied 
requirements on internet. Cloud computing as a new Internet 
service concept has become popular to provide various 
services to user such as multi-media sharing, on-line office 
software, game and on-line storage. Therefore, the huge 
amount of threats poses challenges to modern network 
security systems, which must handle the higher network 
traffic and perform more complicated packet processing. 
Network security architectures as such as firewalls and 
Network Intrusion Detection Systems (NIDS) are utilized to 
detect malice by monitoring the incoming and outgoing 
suspicious network packets.  Most of current NIDS adopts a 
set of rules to compare against packets.  In general, a rule 
consists of a filter and a pattern. Filter is used to determine 

the resulting action that a packet should be dropped or passed 
according to packet header fields. Pattern is used to search 
packet payload to find the location where that the pattern is 
presented, and an associated action is taken if the pattern is 
found.  

Pattern matching is computational intensive process that 
affects the performance of NIDS.  It also occupy about 75% 
of the total CPU processing time of modern NIDS [1, 2]. 
Usually, pattern matching algorithms are used to search for 
matches among a large set of strings from all patterns that 
apply for a particular packet. Pattern matching algorithms 
can be classified into single and multiple pattern algorithms.  

In single pattern matching algorithms, each pattern is 
used to search a given string. Knuth-Morris-Pratt [3] and 
Boyer-Moore [4] are the common-used single pattern 
matching algorithms. Knuth-Morris-Pratt is able to skip 
mismatch characters in the comparison phase by using a 
partial-match table for each pattern. Each table is built by 
preprocessing every pattern separately. In the Boyer-Moore 
algorithm, the execution time can be sub-linear when the 
suffix of the string appears infrequently in the input stream, 
due to the skipping heuristics that it uses.  

Multi-pattern matching algorithms [5, 6, 7] search for a 
set of patterns in a string in parallel. In such algorithms, a set 
of patterns is preprocessed to build a state machine, and then 
the state machine is used scan the string. Each character of 
the string is searched only once. Multi-pattern matching 
scales much better than single pattern matching algorithms.  

Most of NIDS use finite state machines and regular 
expressions to detect patterns. These NIDS are developed 
based on Aho-Corasick [5] and Boyer-Moore algorithms. 
Coit et al. [8] combined the Aho-Corasick trie structure with 
the skipping feature of the Boyer-Moore algorithm to 
improve the performance of Snort [9]. Set-wise Boyer-
Moore-Horspool algorithm [10] is faster than both Aho-
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Corasick and Boyer-Moore algorithms for sets with less than 
100 patterns. Tuck et al. [11] enhanced the Aho-Corasick 
algorithm by applying bitmap node and path compression. 

To speed-up the pattern matching process, specialized 
hardware can be suitable to be used to improve performance 
of NIDS. Sidhu and Prasanna [12] implemented a regular 
expression matching architecture based on FPGAs. Baker et 
al. [13] also investigated efficient pattern matching as a 
signature based method on FPGAs. Attig et al. [14] 
developed a framework to process packet header and scan 
payload content on FPGAs. However, it is high cost to adjust 
a new rule set in such FPGA architectures. It needs to 
program a new circuit, which is then compiled by using 
CAD tools. Any change in the rule set requires the 
recompilation, regeneration of the automation, resynthesis, 
replacement and routing of the circuits which is a time 
consuming and difficult procedure.  

Network processor architecture is used to pipeline the 
processing stages as well as the entire implementation of an 
NIDS on a processor [15, 16]. In addition, network processor 
clusters have been proposed to process intrusion detection by 
many processors in parallel.  However, the cost is still high 
since it requires multiple processors, a distribution network, 
and a clustered management system.  

With the rapid development of mulit-core hardware, 
Graphics Processing Units (GPUs) have been used in many 
applications to enhance the computational performance. 
GPUs have low design cost while their increased 
programmability makes them more flexible than FPGAs. 
General-Purpose Graphics Processing Units (GPGPU) 
programming has been successfully utilized in the scientific 
computing domains which involve a high level of numeric 
computation. The greatest benefit is that the processing units 
grow from many (CPU, about 2-16) to massive (GPU, about 
128-512). In 2006, NVIDIA proposed the Compute Unified 
Device Architecture (CUDA). CUDA uses a new computing 
architecture named Single Instruction Multiple Threads 
(SIMT) [17]. This architecture allows thread to execute 
independent and divergent instruction streams, facilitating 
decision based execution which is not provide for by the 
more common Single Instruction Multiple Data (SIMD). 
Jocob and brodley [3] implemented the Knuth-Morris-Pratt 
algorithm on GPU as a pattern matching engine for NIDS in 
PixelSnort [18]. However, their performance results 
indicated insignificant improvement. Giorgos et al. [19] 
developed a modified Snort, called Gnort, by implementing 
Aho-Corasick algorithm on GPU. They have shown two 
approaches to search patterns. First, each packet is processed 
by a specific thread block, executed by on multiprocessor. 
Secondly, each packet is processed by a different thread. It 
achieved a maximum traffic processing throughput of 
2.3Gbit/s.  

In this paper, we propose an efficient pattern matching 
method to classify huge number of packets simultaneously 
by using GPGPU device. By leveraging nVidia CUDA 
device can achieve low cost, commodity GPU co-processors 
to accelerate processing throughput. We also implement the 
proposed pattern matching algorithm on a variety of memory 
architectures on GPU to discuss the performance of proposed 

method. Furthermore, we take advantage of DMA execution 
of GPUs to impose concurrency between the operations 
handled by the CPU and the GPU. The experiment results 
demonstrate that the proposed method can achieve 10X 
speed up over the CPU implementation of Aho-Corasick 
algorithm. It presents that GPUs is useful for improving 
overall performance of NIDS. 

The structure of this paper is as follows. Section 2 
introduces the GPU programming. Section 3 describes the 
proposed method. Section 4 presents the experiment results. 
We conclude with section 5, providing a brief summary and 
conclusion. 

II. GPGPU PROGRAMMING 
As the GPU has become increasingly more powerful and 

ubiquitous, researchers have begun developing various non-
graphics, or general-purpose applications [20]. The modern 
GPUs are organized in a set of multiporcessors, each of 
which contains a set of stream processors executing the same 
instructions on multiple data streams simultaneously.  

nVidia released the Compute Unified Device 
Architecture (CUDA) SDK to assist developers in creating 
non-graphics applications that run on the GPUs. A CUDA 
programs typically consist of a unit of work issued by the 
host computer to the GPUs is called a kernel that runs in 
parallel on the GPUs. Input data is copied to the on-board 
memory of the GPUs from host computer memory through 
the PCI-E bus prior to invoking the kernel, and output data is 
copied to host computer memory from GPU's memory. All 
memory used by the kernel should be pre-allocated.  

Kernel executes a collection of threads that computes a 
result for a small segment of data. To manage multiple 
threads, kernel is partitioned into thread blocks, with each 
thread block being limited to a maximum of 512 threads. The 
thread blocks are usually positioned within a one or two 
dimensional grid. Each thread can be positioned within a 
given block where it belongs, and this given block can be 
positioned within the grid. Therefore, each thread can 
calculate which elements of data to operate on, and which 
regions of memory to writhe output to by an algebraic 
formula. Each block is executed by a single multiprocessor, 
which allows all threads within the block to communicate 
through on-chip shared memory. 

CUDA devices provide access to several memory 
architectures, such as global memory, constant memory, 
texture memory, share memory and registers, with their 
access latencies and limitations.  The performance of device 
is relevant to the memory variants. Figure 1 illustrates the 
memory architectures of CUDA device.  

 
Global Memory 

Global memory is the biggest memory region available 
on CUDA devices and is capable of storing hundreds of 
megabytes of data. In the CUDA Fermi architecture [17], the 
L1 cache per SM multiprocessor is configurable to support 
the global memory operations. Therefore, the access latency  
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Figure 1.  Memory architectures of CUDA device. 

of global memory is comparable to other GPU memory 
architectures.  

 
Constant Memory 

Constant memory is a small read-only memory region 
that resides in DRAM on CUDA devices. It is globally 
accessible memory for all threads. Since Constant memory 
has on-chip cache, the access latency is short. The cost of a 
cache-hit is as a local register access, but the cost of a cache-
miss is as a global memory access on devices. The constant 
memory is limited to its size.  

 
Texture memory 

Each multi-processor on the CUDA device equips a 
64KB texture cache which can be bound to one or more 
arbitrarily sized region of global memory. Texture memory 
is read only as constant memory. 

 
Shared memory 

Shared memory is block-local that facilitates cooperation 
between multiple threads in a thread block. Shared memory 
is limited to 64KB per multi-processor on CUDA Fermi 
devices. The access latency of shared memory is equivalent 
to that of register. 

 
Registers  

Each block on CUDA device equips a register file that 
contains registers. The register provides fast thread-local 
storage during kernel execution. In the Fermi architecture, 
each multi-processor contains the amount of 32-bit registers 
(32,000) that are shared for all threads in the executing 
thread block.  

III. METHOD 
In the previous implementations of GPU-based pattern 

matching algorithms, each thread has different work load. 
Due to imbalance work load among the threads, the  

 

 
Figure 2.  The architecture of the proposed algorithm. 

performance of pattern matching is inefficient. Therefore, we 
proposed a method to balance the work load among the 
thread, and it performs the pattern matching based on 
hierarchical hash table architecture on GPU. It consists of 
three phases: initialization, pattern matching and data output. 
The initialization phase is to combine a number of packet 
payloads as a very long string, and then this combination is 
transferred to GPUs. In the pattern matching phase, each 
thread searches a fixed window size of combined data. The 
final phase is to transfer the results to host computer. The 
overall processing of the proposed method is shown in 
Figure 2. 

A. Initialization 
In the proposed method, the first step is to transfer packet 

data from the network interface to the memory of GPU 
device. The simplest approach is to transfer each packet 
directly to the GPUs.  However, the overhead associated 
with a data transfer operation to the GPUs is very huge.  

The performance of host-to-device transferring can be 
improved by ZeroCopy technique. ZeroCopy allows threads 
to access main memory on host directly. A special type of 
memory, called page-locked memory, is allocated in the 
physical memory of host to implement ZeroCopy. The use of 
page-locked memory results to higher data transfer 
throughput between the host and the device [17]. 
Furthermore, the copy from page-locked memory to the GPU 
is performed using DMA, without occupying the CPU, and 
threads can access page-locked memory though PCI-E bus.  

In our approach, a number of packet payloads are 
combined to form a long packet payload, and then this long 
packet payload is copied to memory on GPU device. Each 
thread searches in n bytes where n is the maximum pattern 
length. Therefore, the total size of combined packets is 

 
L = n  T, 

 
where L is length of combined packets and T is the number 
of threads. Then, the combined packet data is copied to GPU 
memory. An advantage of combination of packets into a long 
string is that all threads are assigned the same amount of 
work, so execution does not diverge, which would hinder the 
SIMT execution. Figure 3 shows the use of the memory on 
CUDA device. 
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Figure 3.  The use of memory on CUDA device. 

B. Pattern Matching processing on GPU 
In this step, the pattern matching processing is used to 

compare the packet data with patterns. Due to the property of 
branch instructions of GPU, the hash table strategy seems to 
be a perfect candidate for SIMT processors.  Therefore, a 
simple and efficient pattern matching algorithm based on 
hierarchical hash table architecture is developed in this work.  

In the hierarchical hash table architecture, the hash table 
in each level is stored as a one-dimensional array. The 
number of level is equal to the length of the pattern.  Each 
cell of the hash table is the key to the entry of hash table in 
next level.  In case the hash table is the final level, the 
corresponding cell will contain the unique identification 
number of the matching pattern, otherwise zero. A drawback 
of this structure is that hash tables are sparsely populated 
when the number of patterns is small or patterns can be 
classified in few groups by prefix or suffix of patterns. 
However, the some efficient storage structures to compress 
the memory space are much more complex to be 
implemented in GPU device. Figure 4 presents example of 
the proposed algorithm. The hierarchical hash tables are 
constructed in host memory by the CPU, and are then copied 
to constant memory that is accessible directly from the GPU. 

In the proposed algorithm, each packet is spitted into 
fixed equal parts and each thread searches each portion of the 
packet in parallel. As a pattern matching example shown in 
figure 4, the first pattern is “CDEF” and a packet data is 
spitted by four characters. In case the substring “ABCD” 
processed by first thread (thread 0), the first character “A” is 
not searched in the first pattern and then the value 0 is 
returned. The third thread (thread 2) handles the substring 
“CDEF”. According to hash functions, the corresponding 
positions in hierarchical hash tables are found, and then the 
final value 1 is returned. The results are stored in the result 
table that each entry records the pattern id and position of 
found pattern in the combined payload. The pseudo code of 
the proposed algorithm is shown in figure 5.  

C. Data Output 
The result table has been allocated and stored in the GPU 

device memory. This table is copied to the host memory after 
pattern matching execution has been completed. It is easy to  

 
Figure 4.  The example of pattern matching parallelization approach. 

 
Figure 5.  Pseudo code of pattern matching parallelization approach. 

find which packet matches a specific pattern from the result 
table. In the initialization stage, the length of each packet 
payload is recorded in a packet offset table. Therefore, the 
matched packet can be found by subtract the packet offsets 
from the position of the combined payload. This process is 
executed in the host.  

IV. EXPERIMENT 
We implemented the proposed algorithm on single 

NVIDIA GeForceGTS 450 graphics card (Fermi architecture) 
and installed in a PC with an Intel i3 540 3.07 GHz CPUs 
and 8GB DDRIII-1333 RAM running the Linux operating 
system. In the experiment, the size of each packet is fixed to 
1536 bytes. The packets are merged together and are copied 
to GPU memory. The maximum size of merged packets is 
40,000 bytes. In this experiment, the number of processed 
packets is  

 
Pn = T  4 / 1536, 

 
since each thread processes 4 bytes data.  
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TABLE I.  COMBINATION OF VARIOUS MEMORY ARCHITECTURES ON 
CUDA DEVICE 

 Packet Location Rule Location Data Transfer 

1 Global Constant NA 

2 Texture Constant NA 

3 Global Constant Zero Copy 

4 Texture Constant Zero Copy 
 

First, we measure the scalability of the proposed 
algorithm implemented by storing patterns and packet 
payloads on various GPU architectures which are shown in 
table 1. Global memory is the biggest memory region 
available on CUDA devices. Constant memory and register 
files can access data faster than global and texture memory. 
However, some limitations on these two structures. First is 
the storage size. Constant memory is suitable for frequent 
access but low data update rate. The function of register on 
CUDA is the same as the registers on CPU. The over-usage 
of register will decrease the performance of GPU. Therefore, 
the packet data is copied to global and texture memory and 
the patterns are copied to constant memory. We then 
compare the performance of the various algorithms for 
different number of patterns and packet sized. 

In this experiment, we evaluate the performance of 
different implementations of the proposed algorithm on 
various GPU memory architectures. The tested patterns are 
randomly generated which size is 4 bytes and the number of 
patterns is 1200. Figure 6 shows the speedup of 
implementations of the proposed algorithm on GPU 
(displayed as GPU1, GPU2, GPU3 and GPU4 corresponding 
to table 1 in the figure) compared to Aho-Corasick algorithm 
implemented on CPU. All implementations on GPU reach 11 
fold speed-up compared to Aho-Corasick algorithm on CPU. 
Furthermore, the proposed algorithm implemented with 
Zero-Copy outperforms other implementations on GPU. 
Figure 7 shows the execution time for each of 
implementations on GPU. The result presents that the 
implementation on GPU which uses global memory with 
Zero-Copy can achieve the minimum execution time among 
other implementations.  

In the early CUDA devices, cache mechanism was not 
equipped for Global memory, and only texture memory has 
8k cache memory. Therefore, the performance of accessing 
Texture memory is better than that of accessing Global 
memory. But, the size of Texture memory is much less than 
the size of Global memory. In new CUDA Fermi 
architecture, Global memory equips 768kb L2 cache 
memory. Therefore, the packet data can be copied to Global 
memory without considering the cache and memory size. We 
evaluated how each detection algorithm scales with the 
number of patterns. Figure 8 shows the throughput achieved 
for various implementations respectively, to perform pattern 
matching through pattern-sets of size 100 up to 1200. As 
shown in Figure 8, the proposed algorithm implementations 
outperform CPU implementation of Aho-Corasick algorithm. 
Obviously, in the case of the proposed method, the 
throughput remains constant independently of the number of  

 
Figure 6.  Speed-up sustained for the proposed algorithm comparing to 
CPU implementation. 

 
Figure 7.  Speed-up sustained for the proposed algorithm comparing to 
CPU implementation. 

 
Figure 8.  Throughput sustained for the proposed algorithm comparing to 
CPU implementation in different number of patterns. 

 
patterns, a behavior expected for a multi-pattern method. The 
throughputs of both of GPU implementations are 
approximate to 2.5Gbits/S.  

Figures 9 and 10 show the throughput achieved for 
various UDP packet sizes. Each packet contains random data. 
CPU implementation of Aho-Corasick algorithm presented a 
stable performance of around 0.2 Gbit/s. the throughput of 
our implementations reached over 2.3 Gbit/s, giving a total 
speed-up of 11.x compared to the CPU implementation. 
Since the exact packets matched the patterns are calculated   
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(a) CPU implementation and GPU implementation  

 
(b) GPU implementation 

Figure 9.  Throughput sustained for the proposed algorithm comparing to 
CPU implementation in different size of packets. 

in final stage in the host, the performance is affected by the 
packet size. 

V. CONCLUSTION 
In this paper, we presented a GPU-based network 

intrusion detection system that offload pattern matching 
processing from CPU. We developed hierarchical hash table 
architecture to perform the pattern matching operations on 
GPUs. From the experiment results, the proposed algorithm 
achieved a maximum traffic processing throughput of 2.4 
Gbit/s.  

In the future work, we will modify the current data 
structure to perform the multi-pattern matching operations in 
various pattern lengths simultaneously. We also plan to use 
multiple GPUs as GPU cluster to support multiple Network 
Intrusion Detection Systems.  
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