
 Efficient Packet Pattern Matching for Gigabit Network Intrusion Detection using
GPUs

Che-Lun Hung
Dept. of Computer Science & Communication

Engineering
Providence University

Taichung, Taiwan
clhung@pu.edu.tw

Chun-Yuan Lin

Department of Computer Science and Information
Engineering,

Chang Gung University,
Taoyuan, Taiwan

cyulin@mail.cgu.edu.tw

Hsiao-hsi Wang, Chin-Yuan Chang
Dept. of Computer Science & Information Management

Providence University
Taichung, Taiwan

hhwang@pu.edu.tw, a3014006@gmail.com

Abstract—With the rapid development of network hardware
technologies and network bandwidth, the high link speeds and
huge amount of threats poses challenges to network intrusion
detection systems, which must handle the higher network
traffic and perform more complicated packet processing. In
general, pattern matching is a highly computationally intensive
process part of network intrusion detection systems. In this
paper, we present an efficient GPU-based pattern matching
algorithm by leveraging the computational power of GPUs to
accelerate the pattern matching operations to increase the
over-all processing throughput. From the experiment results,
the proposed algorithm achieved a maximum traffic processing
throughput of 2.4 Gbit/s. The results demonstrate that GPUs
can be used effectively to speed up intrusion detection systems.

Keywords-GPU; parallel processing; patttern matching;
intrusion dection systems

I. INTRODUCTION
With the repaid development of network hardware

technologies and network bandwidth, the high link speeds
provide various platforms and web services to satisfy varied
requirements on internet. Cloud computing as a new Internet
service concept has become popular to provide various
services to user such as multi-media sharing, on-line office
software, game and on-line storage. Therefore, the huge
amount of threats poses challenges to modern network
security systems, which must handle the higher network
traffic and perform more complicated packet processing.
Network security architectures as such as firewalls and
Network Intrusion Detection Systems (NIDS) are utilized to
detect malice by monitoring the incoming and outgoing
suspicious network packets. Most of current NIDS adopts a
set of rules to compare against packets. In general, a rule
consists of a filter and a pattern. Filter is used to determine

the resulting action that a packet should be dropped or passed
according to packet header fields. Pattern is used to search
packet payload to find the location where that the pattern is
presented, and an associated action is taken if the pattern is
found.

Pattern matching is computational intensive process that
affects the performance of NIDS. It also occupy about 75%
of the total CPU processing time of modern NIDS [1, 2].
Usually, pattern matching algorithms are used to search for
matches among a large set of strings from all patterns that
apply for a particular packet. Pattern matching algorithms
can be classified into single and multiple pattern algorithms.

In single pattern matching algorithms, each pattern is
used to search a given string. Knuth-Morris-Pratt [3] and
Boyer-Moore [4] are the common-used single pattern
matching algorithms. Knuth-Morris-Pratt is able to skip
mismatch characters in the comparison phase by using a
partial-match table for each pattern. Each table is built by
preprocessing every pattern separately. In the Boyer-Moore
algorithm, the execution time can be sub-linear when the
suffix of the string appears infrequently in the input stream,
due to the skipping heuristics that it uses.

Multi-pattern matching algorithms [5, 6, 7] search for a
set of patterns in a string in parallel. In such algorithms, a set
of patterns is preprocessed to build a state machine, and then
the state machine is used scan the string. Each character of
the string is searched only once. Multi-pattern matching
scales much better than single pattern matching algorithms.

Most of NIDS use finite state machines and regular
expressions to detect patterns. These NIDS are developed
based on Aho-Corasick [5] and Boyer-Moore algorithms.
Coit et al. [8] combined the Aho-Corasick trie structure with
the skipping feature of the Boyer-Moore algorithm to
improve the performance of Snort [9]. Set-wise Boyer-
Moore-Horspool algorithm [10] is faster than both Aho-

2012 IEEE 14th International Conference on High Performance Computing and Communications

978-0-7695-4749-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HPCC.2012.235

1604

2012 IEEE 14th International Conference on High Performance Computing and Communications

978-0-7695-4749-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HPCC.2012.235

1612

Corasick and Boyer-Moore algorithms for sets with less than
100 patterns. Tuck et al. [11] enhanced the Aho-Corasick
algorithm by applying bitmap node and path compression.

To speed-up the pattern matching process, specialized
hardware can be suitable to be used to improve performance
of NIDS. Sidhu and Prasanna [12] implemented a regular
expression matching architecture based on FPGAs. Baker et
al. [13] also investigated efficient pattern matching as a
signature based method on FPGAs. Attig et al. [14]
developed a framework to process packet header and scan
payload content on FPGAs. However, it is high cost to adjust
a new rule set in such FPGA architectures. It needs to
program a new circuit, which is then compiled by using
CAD tools. Any change in the rule set requires the
recompilation, regeneration of the automation, resynthesis,
replacement and routing of the circuits which is a time
consuming and difficult procedure.

Network processor architecture is used to pipeline the
processing stages as well as the entire implementation of an
NIDS on a processor [15, 16]. In addition, network processor
clusters have been proposed to process intrusion detection by
many processors in parallel. However, the cost is still high
since it requires multiple processors, a distribution network,
and a clustered management system.

With the rapid development of mulit-core hardware,
Graphics Processing Units (GPUs) have been used in many
applications to enhance the computational performance.
GPUs have low design cost while their increased
programmability makes them more flexible than FPGAs.
General-Purpose Graphics Processing Units (GPGPU)
programming has been successfully utilized in the scientific
computing domains which involve a high level of numeric
computation. The greatest benefit is that the processing units
grow from many (CPU, about 2-16) to massive (GPU, about
128-512). In 2006, NVIDIA proposed the Compute Unified
Device Architecture (CUDA). CUDA uses a new computing
architecture named Single Instruction Multiple Threads
(SIMT) [17]. This architecture allows thread to execute
independent and divergent instruction streams, facilitating
decision based execution which is not provide for by the
more common Single Instruction Multiple Data (SIMD).
Jocob and brodley [3] implemented the Knuth-Morris-Pratt
algorithm on GPU as a pattern matching engine for NIDS in
PixelSnort [18]. However, their performance results
indicated insignificant improvement. Giorgos et al. [19]
developed a modified Snort, called Gnort, by implementing
Aho-Corasick algorithm on GPU. They have shown two
approaches to search patterns. First, each packet is processed
by a specific thread block, executed by on multiprocessor.
Secondly, each packet is processed by a different thread. It
achieved a maximum traffic processing throughput of
2.3Gbit/s.

In this paper, we propose an efficient pattern matching
method to classify huge number of packets simultaneously
by using GPGPU device. By leveraging nVidia CUDA
device can achieve low cost, commodity GPU co-processors
to accelerate processing throughput. We also implement the
proposed pattern matching algorithm on a variety of memory
architectures on GPU to discuss the performance of proposed

method. Furthermore, we take advantage of DMA execution
of GPUs to impose concurrency between the operations
handled by the CPU and the GPU. The experiment results
demonstrate that the proposed method can achieve 10X
speed up over the CPU implementation of Aho-Corasick
algorithm. It presents that GPUs is useful for improving
overall performance of NIDS.

The structure of this paper is as follows. Section 2
introduces the GPU programming. Section 3 describes the
proposed method. Section 4 presents the experiment results.
We conclude with section 5, providing a brief summary and
conclusion.

II. GPGPU PROGRAMMING
As the GPU has become increasingly more powerful and

ubiquitous, researchers have begun developing various non-
graphics, or general-purpose applications [20]. The modern
GPUs are organized in a set of multiporcessors, each of
which contains a set of stream processors executing the same
instructions on multiple data streams simultaneously.

nVidia released the Compute Unified Device
Architecture (CUDA) SDK to assist developers in creating
non-graphics applications that run on the GPUs. A CUDA
programs typically consist of a unit of work issued by the
host computer to the GPUs is called a kernel that runs in
parallel on the GPUs. Input data is copied to the on-board
memory of the GPUs from host computer memory through
the PCI-E bus prior to invoking the kernel, and output data is
copied to host computer memory from GPU's memory. All
memory used by the kernel should be pre-allocated.

Kernel executes a collection of threads that computes a
result for a small segment of data. To manage multiple
threads, kernel is partitioned into thread blocks, with each
thread block being limited to a maximum of 512 threads. The
thread blocks are usually positioned within a one or two
dimensional grid. Each thread can be positioned within a
given block where it belongs, and this given block can be
positioned within the grid. Therefore, each thread can
calculate which elements of data to operate on, and which
regions of memory to writhe output to by an algebraic
formula. Each block is executed by a single multiprocessor,
which allows all threads within the block to communicate
through on-chip shared memory.

CUDA devices provide access to several memory
architectures, such as global memory, constant memory,
texture memory, share memory and registers, with their
access latencies and limitations. The performance of device
is relevant to the memory variants. Figure 1 illustrates the
memory architectures of CUDA device.

Global Memory

Global memory is the biggest memory region available
on CUDA devices and is capable of storing hundreds of
megabytes of data. In the CUDA Fermi architecture [17], the
L1 cache per SM multiprocessor is configurable to support
the global memory operations. Therefore, the access latency

16051613

Figure 1. Memory architectures of CUDA device.

of global memory is comparable to other GPU memory
architectures.

Constant Memory

Constant memory is a small read-only memory region
that resides in DRAM on CUDA devices. It is globally
accessible memory for all threads. Since Constant memory
has on-chip cache, the access latency is short. The cost of a
cache-hit is as a local register access, but the cost of a cache-
miss is as a global memory access on devices. The constant
memory is limited to its size.

Texture memory

Each multi-processor on the CUDA device equips a
64KB texture cache which can be bound to one or more
arbitrarily sized region of global memory. Texture memory
is read only as constant memory.

Shared memory

Shared memory is block-local that facilitates cooperation
between multiple threads in a thread block. Shared memory
is limited to 64KB per multi-processor on CUDA Fermi
devices. The access latency of shared memory is equivalent
to that of register.

Registers

Each block on CUDA device equips a register file that
contains registers. The register provides fast thread-local
storage during kernel execution. In the Fermi architecture,
each multi-processor contains the amount of 32-bit registers
(32,000) that are shared for all threads in the executing
thread block.

III. METHOD
In the previous implementations of GPU-based pattern

matching algorithms, each thread has different work load.
Due to imbalance work load among the threads, the

Figure 2. The architecture of the proposed algorithm.

performance of pattern matching is inefficient. Therefore, we
proposed a method to balance the work load among the
thread, and it performs the pattern matching based on
hierarchical hash table architecture on GPU. It consists of
three phases: initialization, pattern matching and data output.
The initialization phase is to combine a number of packet
payloads as a very long string, and then this combination is
transferred to GPUs. In the pattern matching phase, each
thread searches a fixed window size of combined data. The
final phase is to transfer the results to host computer. The
overall processing of the proposed method is shown in
Figure 2.

A. Initialization
In the proposed method, the first step is to transfer packet

data from the network interface to the memory of GPU
device. The simplest approach is to transfer each packet
directly to the GPUs. However, the overhead associated
with a data transfer operation to the GPUs is very huge.

The performance of host-to-device transferring can be
improved by ZeroCopy technique. ZeroCopy allows threads
to access main memory on host directly. A special type of
memory, called page-locked memory, is allocated in the
physical memory of host to implement ZeroCopy. The use of
page-locked memory results to higher data transfer
throughput between the host and the device [17].
Furthermore, the copy from page-locked memory to the GPU
is performed using DMA, without occupying the CPU, and
threads can access page-locked memory though PCI-E bus.

In our approach, a number of packet payloads are
combined to form a long packet payload, and then this long
packet payload is copied to memory on GPU device. Each
thread searches in n bytes where n is the maximum pattern
length. Therefore, the total size of combined packets is

L = n T,

where L is length of combined packets and T is the number
of threads. Then, the combined packet data is copied to GPU
memory. An advantage of combination of packets into a long
string is that all threads are assigned the same amount of
work, so execution does not diverge, which would hinder the
SIMT execution. Figure 3 shows the use of the memory on
CUDA device.

16061614

Figure 3. The use of memory on CUDA device.

B. Pattern Matching processing on GPU
In this step, the pattern matching processing is used to

compare the packet data with patterns. Due to the property of
branch instructions of GPU, the hash table strategy seems to
be a perfect candidate for SIMT processors. Therefore, a
simple and efficient pattern matching algorithm based on
hierarchical hash table architecture is developed in this work.

In the hierarchical hash table architecture, the hash table
in each level is stored as a one-dimensional array. The
number of level is equal to the length of the pattern. Each
cell of the hash table is the key to the entry of hash table in
next level. In case the hash table is the final level, the
corresponding cell will contain the unique identification
number of the matching pattern, otherwise zero. A drawback
of this structure is that hash tables are sparsely populated
when the number of patterns is small or patterns can be
classified in few groups by prefix or suffix of patterns.
However, the some efficient storage structures to compress
the memory space are much more complex to be
implemented in GPU device. Figure 4 presents example of
the proposed algorithm. The hierarchical hash tables are
constructed in host memory by the CPU, and are then copied
to constant memory that is accessible directly from the GPU.

In the proposed algorithm, each packet is spitted into
fixed equal parts and each thread searches each portion of the
packet in parallel. As a pattern matching example shown in
figure 4, the first pattern is “CDEF” and a packet data is
spitted by four characters. In case the substring “ABCD”
processed by first thread (thread 0), the first character “A” is
not searched in the first pattern and then the value 0 is
returned. The third thread (thread 2) handles the substring
“CDEF”. According to hash functions, the corresponding
positions in hierarchical hash tables are found, and then the
final value 1 is returned. The results are stored in the result
table that each entry records the pattern id and position of
found pattern in the combined payload. The pseudo code of
the proposed algorithm is shown in figure 5.

C. Data Output
The result table has been allocated and stored in the GPU

device memory. This table is copied to the host memory after
pattern matching execution has been completed. It is easy to

Figure 4. The example of pattern matching parallelization approach.

Figure 5. Pseudo code of pattern matching parallelization approach.

find which packet matches a specific pattern from the result
table. In the initialization stage, the length of each packet
payload is recorded in a packet offset table. Therefore, the
matched packet can be found by subtract the packet offsets
from the position of the combined payload. This process is
executed in the host.

IV. EXPERIMENT
We implemented the proposed algorithm on single

NVIDIA GeForceGTS 450 graphics card (Fermi architecture)
and installed in a PC with an Intel i3 540 3.07 GHz CPUs
and 8GB DDRIII-1333 RAM running the Linux operating
system. In the experiment, the size of each packet is fixed to
1536 bytes. The packets are merged together and are copied
to GPU memory. The maximum size of merged packets is
40,000 bytes. In this experiment, the number of processed
packets is

Pn = T 4 / 1536,

since each thread processes 4 bytes data.

16071615

TABLE I. COMBINATION OF VARIOUS MEMORY ARCHITECTURES ON
CUDA DEVICE

 Packet Location Rule Location Data Transfer

1 Global Constant NA

2 Texture Constant NA

3 Global Constant Zero Copy

4 Texture Constant Zero Copy

First, we measure the scalability of the proposed
algorithm implemented by storing patterns and packet
payloads on various GPU architectures which are shown in
table 1. Global memory is the biggest memory region
available on CUDA devices. Constant memory and register
files can access data faster than global and texture memory.
However, some limitations on these two structures. First is
the storage size. Constant memory is suitable for frequent
access but low data update rate. The function of register on
CUDA is the same as the registers on CPU. The over-usage
of register will decrease the performance of GPU. Therefore,
the packet data is copied to global and texture memory and
the patterns are copied to constant memory. We then
compare the performance of the various algorithms for
different number of patterns and packet sized.

In this experiment, we evaluate the performance of
different implementations of the proposed algorithm on
various GPU memory architectures. The tested patterns are
randomly generated which size is 4 bytes and the number of
patterns is 1200. Figure 6 shows the speedup of
implementations of the proposed algorithm on GPU
(displayed as GPU1, GPU2, GPU3 and GPU4 corresponding
to table 1 in the figure) compared to Aho-Corasick algorithm
implemented on CPU. All implementations on GPU reach 11
fold speed-up compared to Aho-Corasick algorithm on CPU.
Furthermore, the proposed algorithm implemented with
Zero-Copy outperforms other implementations on GPU.
Figure 7 shows the execution time for each of
implementations on GPU. The result presents that the
implementation on GPU which uses global memory with
Zero-Copy can achieve the minimum execution time among
other implementations.

In the early CUDA devices, cache mechanism was not
equipped for Global memory, and only texture memory has
8k cache memory. Therefore, the performance of accessing
Texture memory is better than that of accessing Global
memory. But, the size of Texture memory is much less than
the size of Global memory. In new CUDA Fermi
architecture, Global memory equips 768kb L2 cache
memory. Therefore, the packet data can be copied to Global
memory without considering the cache and memory size. We
evaluated how each detection algorithm scales with the
number of patterns. Figure 8 shows the throughput achieved
for various implementations respectively, to perform pattern
matching through pattern-sets of size 100 up to 1200. As
shown in Figure 8, the proposed algorithm implementations
outperform CPU implementation of Aho-Corasick algorithm.
Obviously, in the case of the proposed method, the
throughput remains constant independently of the number of

Figure 6. Speed-up sustained for the proposed algorithm comparing to
CPU implementation.

Figure 7. Speed-up sustained for the proposed algorithm comparing to
CPU implementation.

Figure 8. Throughput sustained for the proposed algorithm comparing to
CPU implementation in different number of patterns.

patterns, a behavior expected for a multi-pattern method. The
throughputs of both of GPU implementations are
approximate to 2.5Gbits/S.

Figures 9 and 10 show the throughput achieved for
various UDP packet sizes. Each packet contains random data.
CPU implementation of Aho-Corasick algorithm presented a
stable performance of around 0.2 Gbit/s. the throughput of
our implementations reached over 2.3 Gbit/s, giving a total
speed-up of 11.x compared to the CPU implementation.
Since the exact packets matched the patterns are calculated

16081616

(a) CPU implementation and GPU implementation

(b) GPU implementation

Figure 9. Throughput sustained for the proposed algorithm comparing to
CPU implementation in different size of packets.

in final stage in the host, the performance is affected by the
packet size.

V. CONCLUSTION
In this paper, we presented a GPU-based network

intrusion detection system that offload pattern matching
processing from CPU. We developed hierarchical hash table
architecture to perform the pattern matching operations on
GPUs. From the experiment results, the proposed algorithm
achieved a maximum traffic processing throughput of 2.4
Gbit/s.

In the future work, we will modify the current data
structure to perform the multi-pattern matching operations in
various pattern lengths simultaneously. We also plan to use
multiple GPUs as GPU cluster to support multiple Network
Intrusion Detection Systems.

ACKNOWLEDGMENT
This research was partially supported by the National

Science Council under the Grants NSC-99-2632-E-126-001-
MY3.

REFERENCES

[1] S. Antonatos, K. Anagnostakis, and E. Markatos, “Generating
realistic workloads for network intrusion detection systems,” Proc.
ACM Workshop on Software and Performance, Jan. 2004, pp. 207-
215.

[2] J. B. D. Cabrera, J. Gosar,W. Lee, and R. K. Mehra, “On the
statistical distribution of processing times in network intrusion
detection,” Proc. IEEE Conf. on Decision and Control, Dec. 2004, pp.
75-80.

[3] D. E. Knuth, J. Morris, and V. Pratt, “Fast pattern matching in
strings,” SIAM J. on Computing, vol. 6, 1997, pp. 127-146, 1977.

[4] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the Association for Computing Machinery, vol.
20, Oct. 1977, pp. 762-772.

[5] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, June
1975, pp. 333-340.

[6] B. Commentz-Walter, “A string matching algorithm fast on the
average,” Proc. Intl. Colloquium on Automata, Languages and
Programming, 1979, pp. 118-131.

[7] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Technical Report TR-94-17, 1994.

[8] C. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of Snort,”
Proc. DARPA Information Survivability Conference & Exposition II,
June 2001, pp. 367-373.

[9] M. Roesch, “Snort: Lightweight intrusion detection for networks,”
Proc. USENIX LISA Systems Administration Conference, Nov. 1999,
pp. 229-238.

[10] M. Fisk and G. Varghese, “Applying fast string matching to intrusion
detection,” Technical Report In preparation, successor to UCSD TR
CS2001-0670, 2002.

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
Proc. IEEE Infocom Conf., 2004, pp. 333-340.

[12] R. Sidhu and V. Prasanna, “Fast regular expression matching using
FPGAs,” Proc. IEEE Symp. Field-Programmable Custom Computing
Machines, 2001.

[13] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern
matching on FPGAs,” Proc. ACM/SIGDA Intl. Symp. Field
Programmable Gate Arrays, 2004, pp. 223-232.

[14] M. Attig and J. Lockwood, “A framework for rule processing in
reconfigurable network systems” Proc. Annual IEEE Symp. Field
Programmable Custom Computing Machines, 2005, pp. 225-234.

[15] H. Bos and K. Huang, “Towards software-based signature detection
for intrusion prevention on the network card,” Proc. Intl. Symp.
Recent Advances in Intrusion Detection, Sept. 2005.

[16] D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck,
“Cryptographics: Secret key cryptography using graphics cards,” Proc.
RSA Conference, Cryp-tographer’s Track, 2005, pp. 334-350.

[17] Nvidia, “cuda c best practices guide”, version 4. Online, March 2011.
[18] N. Jacob and C. Brodley, “Offloading IDS computation to the GPU,”

Proc. IEEE. Annual Computer Security Applications Conf., 2006, pp.
371-380.

[19] G. Vasiliadis , S. Antonatos , M. Polychronakis , E. P, and S.
Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors”, Proc. Intl. Symp. Recent Advances in
Intrusion Detection, 2008, pp. 116-134.

[20] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E.
Lefohn, and T. Purcell, “A Survey of General-Purpose Computation
on Graphics Hardware,” Computer Graphics Forum, vol. 26, 2007,
pp. 80-113.

16091617

